

DOE Oil & Gas Research Program

Advancing Technologies to Ensure Safe and Prudent Oil & Gas Development

Program Overview

Sheraton Station Square, Pittsburgh PA

Jared Ciferno

Technology Manager, Oil & Gas

August 17, 2016

National Energy Technology Laboratory

Program Elements

Unconventional Oil & Gas	Developing technologies to maximize recovery and reduce environmental impact from unconventional oil & gas development
Methane Hydrates	Determine the potential for methane hydrates as a energy resource , the environmental impacts associated with production, and it's role in the global climate cycle.
Methane Quantification	Assessing current methane emissions data and addressing data gaps (emission factors) in EPA's Greenhouse Gas Inventory
Methane Mitigation	Developing technologies and practices to mitigate CH4 <i>emissions</i> from natural gas transmission, distribution, and storage facilities
Offshore	Developing technologies that minimize the environmental impacts and improve the safety of deepwater and ultra- deepwater oil and natural gas production

Mission

Prudent Development

Oil and natural gas resources development, operations, and delivery systems that achieve a broadly acceptable balance of several factors:

- Environmental stewardship and sustainability
- Energy security Economic growth

•

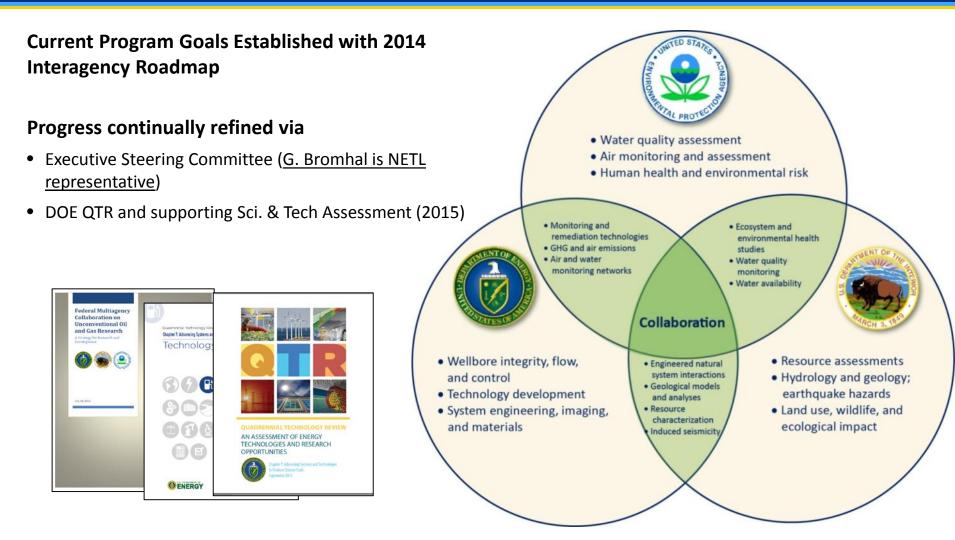
Human health and safety

Maximize Public Benefits

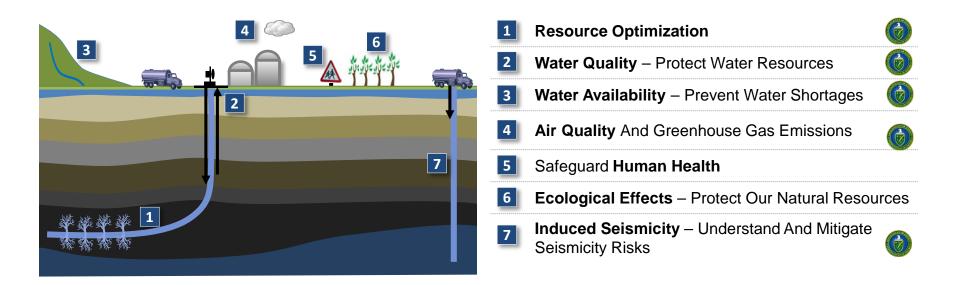
The abundance of domestic oil and natural gas offers substantial supply for decades, helping reduce U.S. reliance on imported oil and promoting energy security.

Promote Sustainability

The scale and nature of the technologies used to develop unconventional oil and gas resources have prompted concerns over potential impacts.



Unconventional Program Goals



Unconventional Oil & Gas Research Areas

Advancing technology to secure resources that cannot be produced economically through standard drilling and completion practices such as shale gas, shale oil, tight gas, and tight oil.

- Access abundant, domestic resources as a vital component of energy portfolio
- Enhance energy, economic, and environmental security
- Create significant income, employment, and other economic benefits.
- Understand potential impacts on human health and the environment and how they can be mitigated
- Use natural gas as a bridge fuel during transition to even cleaner energy

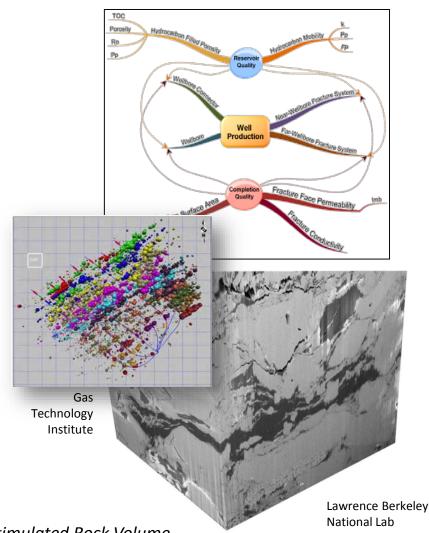
UOG Resource Optimization "Mastering the Subsurface"

Resource Evaluation

- Resource is a dynamic function of technology
- Need for information beyond currently-recoverable
- Need to constrain the potential timing , scale, and nature of development

Fundamental Science

- No two UOG reservoirs are alike
- Macro responses driven by micro phenomena
- Fundamental principles do not apply


Research Needs

Improved characterization "tools"

National Energy

Technology Laboratory

- New SRV diagnostic "tools"
- Control of Stimulation
- New technology field demo's

SRV – Stimulated Rock Volume

Unconventional Field Laboratories

- Dedicated Science wells; extensive coring; instrumented production wells
- Baseline and real-time observation/monitoring
- NEW technology testing and demonstration
- Public and International training and outreach
- Broad collaborative opportunities

Utica Shale Energy and **Environment Laboratory Ohio State Marcellus Shale Energy and Environment Laboratory Hydraulic Fracture Test Site** West Virginia Univ. **Gas Technology Institute** Dry Gas **Permian Basin** Liquid Rich Shale

Methane Hydrates

Geohazards

1. Safe drilling/production through gas hydrate.

4.

Global Environment

- . linkages to deep sea bio communities
- 2. destabilization of the sea-floor
- 3. Mediation of global carbon cycling
 - Feedback to climate change?

Energy Resource Potential

- 1. Feasible targets and potential volumes
- 2. Effective exploration
- 3. Safe and viable production
- 4. Environmental impacts mitigation

Methane Hydrate Program Goals

Current Program Goals Established with 2006 Interagency Roadmap

Goals continually refined via

- FAC (~ every 9 months)
- Interagency Technical Coordination Team (Bi-annual)
- National Academies Reviews (2005 & 2010)
- DOE QTR (2015)
- Secretary of Energy Advisory Board (2016)

NEAR-TERM GOALS (2020)

- Demonstrate long-term Technical Recoverability (Alaska)
- Confirm Gulf of Mexico Resource Assessment
- Continue International Collaborations

LONG-TERM GOALS (2025)

- Confirm scale of US resource base (+ Atlantic)
- Demonstrate Production Approach (Alaska + International)
- Consensus view on GH/Climate linkages via field programs + modeling

Methane Hydrate R&D Needs

NETL

- Field Sampling Technology
 - Tested, reliable coring and analytical tools

• Exploration Technology

Extension of prospecting approaches to more challenging settings

Resource Characterization

- Consensus on scale of US OCS resource
- Marine petroleum systems evaluation incl. petrophysics

Production Technology

- Optimized production systems developed
- Environmental impacts identified and mitigated
- Reliable simulation capabilities demonstrated
- Potential producibility of mud-hosted hydrates determined

• Role in the Natural Environment

Consensus on the nature and implications of GH geohazards

2016/2017 Hydrate Research Priorities

- 1. Characterize samples and update production models (with collaborating labs)—Samples from Alaska North Slope and GoM.
- 2. Complete numerical simulation modeling in collaboration with India and Korea in preparation for international field opportunities (collaboration with LBNL, USGS)
- 3. Increase numerical simulation modeling in preparation for Alaska production test (collaboration with Japan) \rightarrow Design test parameters
- 4. (Gulf of Mexico) Complete a sea test of the DOE hydrate pressure coring system with UT-Austin
- (Gulf of Mexico) Pursue opportunity for 2nd expedition through the Integrated Ocean Discovery Program
- 6. (Alaska) Conduct stratigraphic test drilling at a Prudhoe Bay site with Japan and industry partners. Confirm occurrence of suitable reservoirs for longterm testing.

2016 Funding Opportunity Announcement

- Two topic areas, fundamental science
- \$4.5 Million DOE

Topic Area 1: Hydrate Production Science

Determine the petrophysical and thermodynamic nature of gas-hydrate bearing sediments (including reservoir and bounding units), and their response to induced changes in physical and/or chemical conditions. Critical for long-term production systems design and operation for <u>both marine and permafrost settings</u>.

Topic Area 2: Environmental/Climate Science:

Determine gas hydrate's occurrence and role in the global natural environment. Specifically, determine the potential for significant response to <u>warming climates</u> (from climate-driven hydrate dissociation)

Natural Gas Infrastructure Program Methane Quantification & Mitigation

Natural Gas Infrastructure

New Program

President's Climate Action Plan

"Curbing emissions of **methane** is critical to our overall effort to address global climate change. ... To achieve additional progress, the Administration will":

- Develop a comprehensive Interagency Methane Strategy (completed March 2014)
- Pursue a collaborative approach with state governments and the private sector and cover all methane emitting sectors

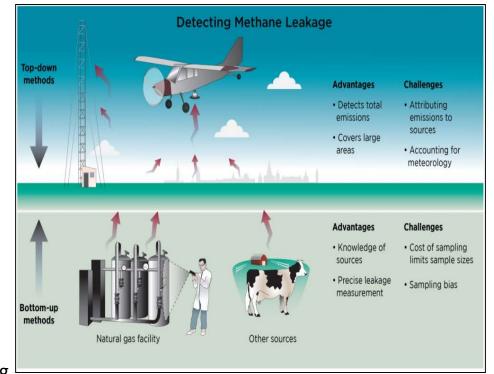
Interagency Methane Strategy – Three Pillars

Assessing current emissions data and addressing data gaps Identifying Technologies and Best Practices for Reducing Emissions Identifying Existing Authorities and Incentive-based Opportunities for Reducing Emissions

NG Infrastructure

Methane Emissions Quantification

Measurement


- Reconcile conflicting results from different approaches
- Are leakage rates representative?

• Attribution

- Accounting for other sources?
- Accounting for dispersion?
- Representative conditions?
- Role of a few, large, emitters

• Mitigation

- New standards in industry are reducing upstream emissions
- New monitoring devices with focus on mid-stream are needed

MIT Energy Initiative, 2013

NG Infrastructure Methane Mitigation

www.eia.gov, EPA: Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2012, April 15, 2014

2016/2017 Key Research Priorities

1. Methane Quantification → Initiate steps to inform EPA Greenhouse Gas Inventory:

- Initiate field measurements to improve component level emission data, activity data and non-inventoried natural gas emission sources from gathering systems and abandoned/legacy wells (Specifically, assessments to take place in the Sesquehannock State Forest and Oil Creek Park, Pennsylvania)
- Initiate Modeling Activities: Time Series Modeling (emission factor), LCA (improve uncertainty of key methane contributions, Tracking/Evaluation of Methane Abatement Technology
- Investigate emissions from distribution systems, and underground natural gas storage → inform EPA GHGI.
- 2. Mitigation:
 - Develop electrochemical point sensors for quantification of corrosion rates and environmental monitoring (e.g. pH), distributed optical sensor technologies for T, P, methane conc, passive sensors for multiparameter sensing.
 - Initiate the development of advanced liner and coatings.
 - Begin the development of advanced pipeline inspection & repair technologies (without evacuation of the methane gas)

Funding Opportunity Announcement Natural Gas Infrastructure

- 6 Topic Areas
- \$19 million

Quantification (\$7 Million)

Topic Area 1: Gathering System Pipeline and Compressor Characterization

Topic Area 2: Distribution System Characterization

Topic Area 3: Underground Natural Gas Storage Emissions

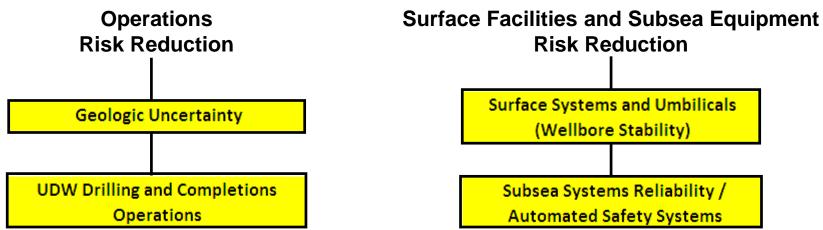
Mitigation (\$12 Million)

Topic Area 1: Pipeline Inspection & Repair

Topic Area 2: Smart Pipeline Sensors (Btu, gas quality, pressure, flow rate)

Topic Area 3: Advanced Technologies (pneumatic controllers, compressor seals, natural gas dehydrators, gathering lines & connections)

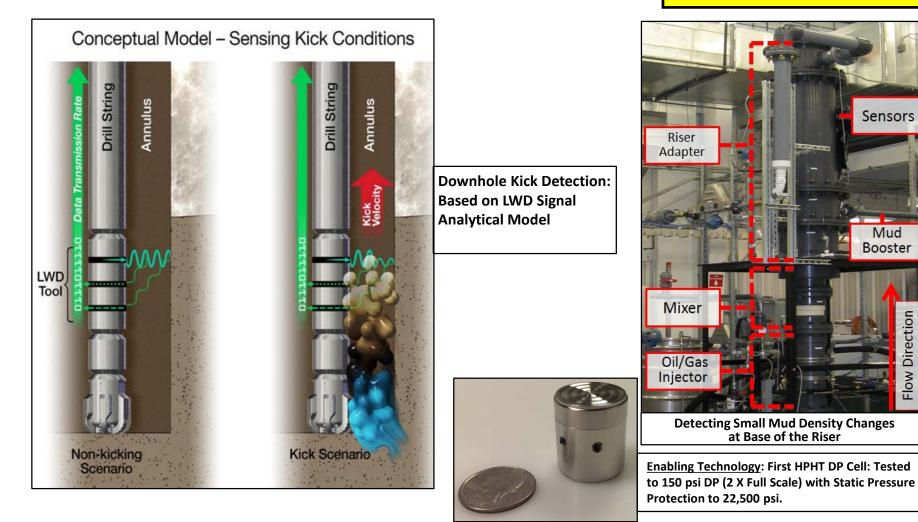
Offshore R&D Needs Safety & Environmental Sustainability


DEPARTMENT OF

ENERGY

National Energy

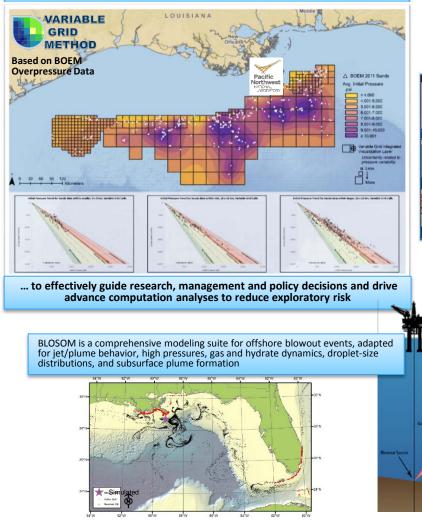
Technology Laboratory



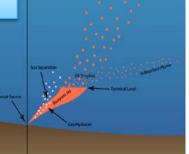
Technology Focus on Safety & Environmental Sustainability

Reducing Geologic Uncertainty Early Kick Detection

Geologic Uncertainty

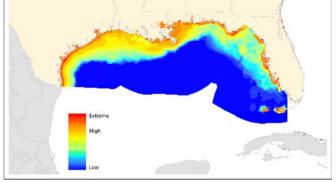

Reducing Geologic Uncertainty

Integrated Risk Assessment & EDX


When utilized for subsurface analysis and exploration, VGM helps analyze the *relationship between uncertainty and data...*

Geologic Uncertainty

National Energy Technology Laboratory



Energy Data Exchange (EDX)

CSIL provides inputs for broad impacts modeling that can be used to identify spatial & temporal trends as well as help quantify potential impact severity associated with blowouts & leaks in the GOM to support oil spill prevention efforts

Cumulative Spatial Impact Layers (CSIL) Approach

FY2017 Offshore Research Priorities

- 1. Hydrocarbon Equation of State (EOS): Continue efforts that have placed NETL at the forefront of experimental and modeling studies of fluid density at extreme conditions.
- 2. Integrated Risk Assessment Model (IAM): Continue to develop the science based resources needed to improve understanding and performance of offshore oil and gas systems to reduce uncertainty for safe and responsible production of offshore resources.
- 3. Early Kick Detection: Continue to use field data from wells that have experienced a documented loss of well control to verify the kick detection methodology.
- 4. Metals: Continue to develop the scientific base for predicting and quantifying potential risks associated with exploration and production equipment in extreme offshore environments.
- 5. Lightweight cement (formerly foam cement): Continue to use NETL's state-ofthe-art facilities, expertise in wellbore cements, and significant industry collaboration to improve the knowledge required to ensure safe operations in using lightweight cements in the deep offshore environment
- 6. Barrier interfaces: Continue to advance the science-base for understanding critical weak-links in the well integrity system and provide tools and data that industry and regulators can use to compare with their own in-house codes

and technologies to ensure safe operations in the offshore environment National Energy Technology Laboratory *PRE-DECISIONAL DRAFT PROCUREMENT SENSITIVE*25

Partnerships Critical to Oil & Gas Mission Thank You!

For More Information, Contact NETL the ENERGY lab

Delivering Yesterday and Preparing for Tomorrow

www.netl.doe.gov

National Energy Technology Laboratory

Marcellus Shale Experiment and Environment Laboratory (MSEEL)

Geochemistry (WVU; - OSU)

- Rock Kerogen; TOC; C/N/S; XRD; FIB/SM; cryo-laser ablation; Hg porosimetry
- Fluids/Gases Continuous monitoring S/C/O/H isotopes, organics, DOC, NORM, noble gases

Microbiology (OSU; WVU)

• Biomass; microbial lipids, metagenomics

Petrophysics/Geomechanics (WVU)

- Steady-state permeability (*in situ* P/T); porosity; pore-size; adsorption → dynamic petrophysics f(P); vertical/lateral heterogeneity.
- Mechanical strength measurements (laboratory and well-log)
- FIB/SEM: pore and mineralogical structure
- Log to core calibration; comparison to industry standard methods;
- Real-time, actionable data for HF operations; comparative geometric (5H) and engineered (3H) completions
- natural fracture imaging; fibre-optics monitoring → Multi-scale (nano-scale to SRV) numerical simulation.

Geophysics (WVU)

३४।३:रल

 Borehole microseismic – SRV characterization in multi-well context

Surface Water: Organics, inorganics, rads

Produced Water: Major cation/anion & trace elements, DOC, Sr/Li isotopes, S/C/O/H isotopes, organics, lipids, genomics, noble gas and radioactive elements

Air: C, H isotope composition of methane, ethane, CO2, noble gas isotopes, particulates & NOx

Complementary Research at the MSEEL

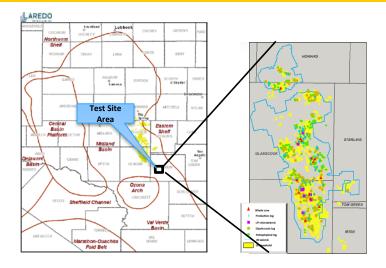
By NETL In-House

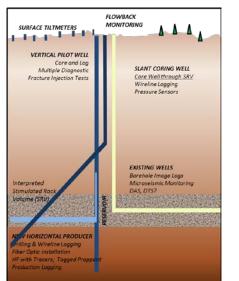
- NETL: multi-scale CT imaging/micro-scale structure; MSCL
- NETL: Sr/Li isotopes; major cation/anion/trace elements
- NETL: surface micro-science array; fracturing and relaxation
- NETL: SRA/TOC
- NETL: fracture modeling (FMI)

By Existing National Laboratory Contributors

- *LANL*: tri-axial core-flood w/tracers & AE → in situ fracture formation and permeability; X-ray tomography → apertures and conductivity.
- LBNL: thermodynamic; X-Ray CT → laboratory and numerical studies of fluids flow and mobility in shales t

By Collaborating Federal Agencies


• USGS: contaminants in drill cuttings - wastewater evaluations


By Shale Gas Cooperative Agreement Contributors

- UT-A: tri-axial compressive strength; ultrasonic velocity; NMR during fracture; SEM and FIB
- Ok. St: petrophysical protocols: shale-fluid interaction
- UT-A: relative effect of pore pressure & confining stress on permeability
- SLAC: shale and fracturing fluid at the micro-nanoscale

Hydraulic Fracture Test Site (HTFS)

3 yrs: DOE Costs \$7.61 m; Total Cost: \$18 m Liquid rich Upper & Middle Wolfcamp Shale Active site; Extensive existing data set brought by partner

Timing:

Oct-Dec 2015 – stimulate 11 wells; Feb- Mar 2016 - drill & core slant well May 2016- characterize core and install pressure sensors in slant well

Performer: GTI; Subs – U Texas at Austin & BEG Field Site Host: Laredo Petroleum Inc. JIP Participants: Devon, Encana, TOTAL, Discovery Natural Resources, Energen, Halliburton, & Core Labs

Objectives: Minimize environmental impacts, and determine optimum well spacing based on fracturing efficiency

Project: Hydraulic fracture of 11 new in-field wells, plus 2 previous horizontal producers were re-fractured

Hydraulic Fracture Test Site (HTFS) Subsurface Science

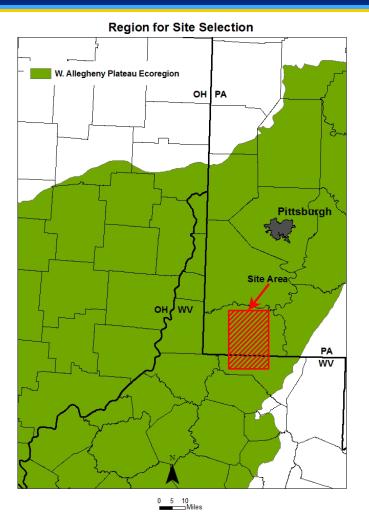
Petrophysics/Geomechanics

- Characterization of Target Zone logs & sidewall cores
- Slant well FMI log and core CT scans correlated
- Formation pressure to be monitored from slant well during production
- Diagnostic Fracture Injection Tests (DFIT) run in laterals to determine formation breakdown pressure
- Toe DFITs conducted in multiple wells
- Multiple stimulation designs used
- Slant well drilled through stimulated rock volume
- Core recovered from slant well at closest point of 2
 wells being traversed
- Hydraulic and Natural Fracture Investigation CT Scans, core characterization, fracture spatial organization
- Hydraulic Fracture Modeling each fracture stage to be modeled
- Colored proppant used in area of slant well
- RA Tracers run in stimulations to track fracture growth & interference patterns

Geophysics

- Cross well conducted on 3 existing wells prior to and post stimulation
- Microseismic data collected during all 400+ stimulation stages

Microbiology


• Microbial Analysis – Characterize what microbial communities may be introduced via fracking and track how the communities in the deep sub-surface change over time

Environmental Science

- Baseline data provided by Laredo & U. Texas
- Groundwater analysis 5 existing groundwater wells within 5,000 ft being monitored throughout life of project
- Air Monitoring Conducted 1,000 ft upwind & 1,000 ft downwind of pad prior to, during and post stimulation

Utica Shale Energy and Environment Laboratory (USEEL)

5yrs: DOE Costs = \$7.2 m

Site: Utica - TBD

- dry gas
- Deep Utica play (~14,000')
- Exploratory/pioneering science

Location: Deep Utica between Pittsburgh and Morgantown

Timing: Finalize site location July 2016; Baseline environmental to begin early summer 2016

Partners: OSU, w/ WVU, Ohio U., U Calgary, CSI, GSI, HARC, Miami U.)

Science Objectives: Specifics on subsurface scientific data acquisition TBD; and environmental long-term baseline monitoring pre/post drilling